

® TECHNICKÝ A ZKUŠEBNÍ ÚSTAV STAVEBNÍ PRAHA, s.p. Technical and Test Institute for Construction Prague, SOE

Akreditovaná zkušební laboratoř, Autorizovaná osoba, Notifikovaná osoba, Oznámený subjekt, Subjekt pro technické posuzování, Certifikační orgán, Inspekční orgán • Accredited Testing Laboratory, Authorized Body, Notified Body, Technical Assessment Body, Certification Body, Inspection Body • Prosecká 811/76a, 190 00 Praha 9 • Prosek, Czech Republic

> Notified Body 1020 Branch 0100 - Praha

REPORT

on the assessment of performance

according to the Regulation (EU) 305/2011 of the European Parliament and of the Council of 9 March 2011 (the Construction Products Regulation or CPR), Art. 1.4 of the Annex V (system 3)

No. 1020-CPR-010-043118

Trade name:

External aluminium doors

type / variation:

from panels

Technical specification:

EN 14351-1:2006+A2:2016

Manufacturer:

Rene Ossenblok International

INo:

925 208 45 21

Address:

Nowe Żabno 18a, 67-100 Nowa Sól, Poland

Plant⁻

Rene Ossenblok International

Address:

Nowe Żabno 18a, 67-100 Nowa Sól, Poland

Order:

Z010190257

Number of report pages including tittle-page: 9

Number of Annexes: 4

The person taking responsibility for the content of this report:

Ing. Radka Sedmidubská Head Assessor

The person taking responsibility for the correctness of this report:

Stamp of the Notified Body 1020

Praha, August 31, 2020

ng. Iveta Jiroutová Deputy Manager of the Notified Body 1020

Note: This Report may not be reproduced otherwise but complete without a written consent of the notified body deputy manager.

Technical and Testing Institute for Construction Prague, branch 0100 - Praha 9, Prosecká 76a, 190 00, Czech Republic Phone: +420 286 019 400, +420 286 019 436, fax: +420 286 884 209, e-mail: info@tzus.cz, http://www.tzus.cz Bank connection: KB Praha 1 Czech Republic, account No.: 1501-931/0100, ID: 000 15679, VAT: CZ00015679

1. Specification of tested subject

External aluminium doors - single and double leaf doors (bolted solid doors from panels) opening outwards. Intended use: in commercial buildings and distribution substations Section profile schema see Annex 1.

<u>Door frame:</u> aluminium extruded "L" profile (one chamber) – construction depth 60 mm, wall thickness – min. 2,0 mm

Manufacturer: EMAX (Netherlands)

<u>Door leaf:</u> aluminium bolted solid panels with stiffening ribs – total thickness 30 mm (one chamber), wall thickness min. 2,0 mm; "U" profile (depth 40 mm, width 30 mm) - top and bottom from internal side (width of the leaf) fastens the whole construction

Manufacturer: EMAX (Netherlands)

<u>Gasket</u>: profiled seal (around the perimeter) – in the groove of the door frame (from the exterior side); + for double leaf doors, between leaves – 2x seal

Manufacturer: EMKA (Netherlands)

Hardware:

· two door hinges / leaf, with the required load capacity

Manufacturer: Rene Ossenblok International (Poland)

lock (Nemef) with key

Manufacturer: Assa Abloy (Netherlands)

panic exit device (from interior) – push bar

Manufacturer: Moergestel BV Tilburg (Netherlands)

bolt head, dead bolt, vertical rod (stainless steel), round handle (from exterior)

Manufacturer: Rene Ossenblok International (Poland)

Accessories: storm chain, screws M8 x 30 (stainless steel)

Technical specification: EN 14351-1:2006+A2:2016

List of samples:

Sample No. 1: Single leaf door; width 1205 mm, height 2200 mm; leaf 1149 x 2146 mm No. of sample VZ010200091-A (right door)

Sample No. 2: Double leaf door; width 1797 mm, height 2200 mm; leaf 865 x 2146 mm No. of sample VZ010200091-B (active leaf - right)

Sample No. 3: Single leaf door; width 1230 mm, height 2180 mm (size for calculation)

Manufacturer: Rene Ossenblok International

Nowe Żabno 18a, 67-100 Nowa Sól, Poland

Plant:

Rene Ossenblok International

Nowe Żabno 18a, 67-100 Nowa Sól, Poland

2. Sampling

Date of sampling: --

Place of sampling: Sampling were made by producer and the tested samples were

delivered by producer to the laboratory

Sampler:

Rene Ossenblok International

Sampling method: in accordance with the requirements EN 14351-1:2006+A2:2016

Transport mode: by using transport services

Date of the taking over: February 27, 2020 and April 30, 2020

Sample Registration number: VZ010200091-A (sample No. 1)

VZ010200091-B (sample No. 2)

3. The assessment of performance on basis of testing, calculation, tabuled values, descriptive documentation

The assessment was carried out on basis of testing and calculation.

Essential characteristics: - Air permeability

- Watertightness
- Resistance to wind load
- Thermal transmittance

Test equipment and measuring devices:

-	Test stand for airpermeability test, watertightness test and resistance to wind load, Rosenheim system, type VH APCE, producer Holten, GermanyID 328
-	Tape measure 3 m

- Humidity-meter + temperature indicator......ID 343

3.1 The assessment on basis of testing

3.1.1 Air permeability

3.1.1.a) Sample specification: Single leaf door; width 1205 mm, height 2200 mm, sample No. 1 Determination according to test method: EN 1026:2017, classification in accordance with: EN 12207:2017

Test was carried out by: TZÚS Praha, s.p., ATL No. 1018.3, Testing department Praha

Date of test: 03.07. 2020

Another data about the test: see Annex 2a and 2b (course increase air permeability)

Test results:

Characteristic	Obtained data value	Classification
Air permeability	At a positive test pressure 633 Pa, max. air permeability 5,79 m³/h.m; see graph in Annex 2a	Class 3 (according to the total area Class 3, according to the length of joints Class 2)
	At negative test pressure - 377 Pa, max. air permeability 27,45 m³/h.m; see graph in Annex 2b	Class 2 (according to the total area Class 2, according to the length of joints Class 1)
overall evaluation		Class 2

3.1.1.b) Sample specification: Double leaf door; width 1797 mm, height 2200 mm, sample No. 2 Determination according to test method: EN 1026:2017, classification in accordance with: EN 12207:2017

Test was carried out by: TZÚS Praha, s.p., ATL No. 1018.3, Testing department Praha

Date of test: 09.07. 2020

Another data about the test: see Annex 3a and 3b (course increase air permeability)

Test results:

Characteristic	Obtained data value	Classification
Air permeability	At a positive test pressure 611 Pa, max. air permeability 9,16 m³/h.m; see graph in Annex 3a	Class 2 (according to the total area Class 2, according to the length of joints Class 2)
	At negative test pressure - 271 Pa, max. air permeability 22,08 m³/h.m see graph in Annex 3b	Class 2 (according to the total area Class 2, according to the length of joints Class 1)
overall evaluation		Class 2

3.1.2 Watertightness

3.1.2.a) Sample specification: Single leaf door; width 1205 mm, height 2200 mm, sample No. 1

Determination according to test method: EN 1027:2017, classification in accordance with: EN 12208:2001

Test was carried out by: TZÚS Praha, s.p., ATL No. 1018.3, Testing department Praha

Date of test: 03.07. 2020

Another data about the test: see Figure 1

Test results:

Characteristic	Obtained data value	Classification
Watertightness	After sprinkling 55 s at the pressure 50 Pa - water penetration in the right bottom corner and in the middle of the horizontal portion functional joints – see Figure 1	Class 1A

3.1.2.b) Sample specification: Double leaf door; width 1797 mm, height 2200 mm, sample No. 2

Determination according to test method: EN 1027:2017, classification in accordance with: EN 12208:2001

Test was carried out by: TZÚS Praha, s.p., ATL No. 1018.3, Testing department Praha

Date of test: 09.07, 2020

Another data about the test: see Figure 2

Test results:

Characteristic	Obtained data value	Classification
Watertightness	After sprinkling 50 s at the pressure 50 Pa - water penetration in the middle of the horizontal portion functional joints – see Figure 2	Class 1A

3.1.3 Resistance to wind load

3.1.3.a) Sample specification: Single leaf door; width 1205 mm, height 2200 mm, sample No. 1

Determination according to test method: EN 12211:2017, classification in accordance with: EN 12210:2017

Test was carried out by: TZÚS Praha, s.p., ATL No. 1018.3, Testing department Praha

Date of test: 08.07. 2020

Another data about the test: span 2100 mm, see Figure 1

Test results:

Characteristic	Obtained data value	Classification
Resistant to wind load	- maximum frontal deflection 0,6 (1,1) mm at a positive test pressure 400 (2000) Pa	Class C1 (C5)
	- in safety test of 600 (3000) Pa the sample resisted and remained fully functional	
	- maximum frontal deflection 1,3 mm at a negative test pressure 400 Pa	Class C1
	- in safety test of 600 Pa the sample resisted and remained fully functional	
overall evaluatio	n	Class C1

Figure 1 - single leaf door

- OLocation of water penetration
- A, B, M.....Location of measuring points in the test deflection of wind load

Figure 2 - double leaf door

OLocation of water penetration

A, B, M.Location of measuring points in the test deflection of wind load

3.1.3.b) Sample specification: Double leaf door; width 1797 mm, height 2200 mm, sample No. 2 Determination according to test method: EN 12211:2017, classification in accordance with: EN 12210:2017

Test was carried out by: TZÚS Praha, s.p., ATL No. 1018.3, Testing department Praha

Date of test: 10.07. 2020

Another data about the test: span 2100 mm, see Figure 2

Test results:

Characteristic	Obtained data value	Classification
Resistant to wind load	- maximum frontal deflection 0,55 (5,7) mm at a positive test pressure 400 (2000) Pa	Class C1 (C5)
	- in safety test of 600 (3000) Pa the sample resisted and remained fully functional	
	- maximum frontal deflection 0,9 mm at a negative test pressure 400 Pa	Class C1
	- in safety test of 600 Pa the sample resisted and remained fully functional	
overall evaluatio	n	Class C1

The assessment on basis of calculation 3.2

3.2.1. Thermal transmittance

Sample specification: single leaf door; width 1230 mm, height 2180 mm, sample No. 3

Assesment according to test method: EN ISO 10077-1,2:2019

Test was carried out by: TZÚS Praha, s.p., ATL No. 1018.3, Testing department Praha

Date of issue of the protocol: 05.08. 2020

Another data about the test: Annex 4 (Test report No. 010 – 043117 on thermal transmittance

calculation)

Test results:

Characteristic	Obtained data value	Classification
Thermal transmittance	$U_D = 5.7 \text{ W/m}^2.\text{K}$	_

Test results summary

Essential	Obtained data value – external aluminium doors		
characteristics	Sample No. 1 1205 x 2200 mm	Sample No. 2 1797 x 2200 mm	Sample No. 3 1230 x 2180 mm
Air permeability	Class 2	Class 2	-
Watertightness	Class 1A	Class 1A	-
Resistance to wind load	Class C1	Class C1	-
Thermal transmittance	-	-	5,7 W/m².K

5 List of Annexes

Annex 1Door section profile schema, photo from tests	
Annex 2aCourse of air permeability increase - positive test pressure (sample	e No. 1)
Annex 2bCourse of air permeability increase - negative test pressure (samp	le No. 1)
Annex 3aCourse of air permeability increase - positive test pressure (sample	e No. 2)
Annex 3b Course of air permeability increase - negative test pressure (samp	le No. 2)
Annex 4Report No. 010 - 043117 on thermal transmittance calculation	

End of Report

EXTERNAL ALUMINIUM DOORS

Horizontal section

Vertical section A-A - bottom

PHOTO DOCUMENTATION OF THE DOORS

a) Single leaf door

b) Double leaf door

Details

3.7.2020 8:38:22

plocha [m^2]: 2.64 délka spár [m]: 6.4

[Pascal]	[m^3/h]	[m^3/hm^2]	[m^3/hm]
64	9.0	3.43	1.41
109	24.6	9.32	3.84
155	28.0	10.62	4.38
207	28.6	10.84	4.47
260	29.3	11.10	4.58
311	29.3	11.08	4.57
465	33.2	12.59	5.19
633	37.1	14.04	5.79

3.7.2020 9:51:14

plocha [m^2]: 2.64 délka spár [m]: 6.4

[Pascal]	[m^3/h]	[m^3/hm^2]	[m^3/hm]
-47	37.2	14.11	5.82
-101	56.4	21.38	8.82
-153	70.2	26.59	10.97
-210	89.3	33.84	13.96
-257	100.1	37.90	15.63
-285	122.3	46.34	19.11
-377	175.7	66.54	27.45

9.7.2020 13:09:50

plocha [m^2]: 3.95 délka spár [m]: 9.69

[Pascal]	[m^3/h]	[m^3/hm^2]	[m^3/hm]
55	45.2	11.45	4.67
104	64.9	16.44	6.70
156	73.5	18.61	7.59
209	70.4	17.82	7.26
256	72.6	18.37	7.49
315	74.9	18.95	7.73
464	83.6	21.16	8.62
611	88.8	22.48	9.16

9.7.2020 13:18:14

plocha [m^2]: 3.95 délka spár [m]: 9.69

[Pascal]	[m^3/h]	[m^3/hm^2]	[m^3/hm]
-55	41.1	10.40	4.24
-87	89.5	22.66	9.24
-139	132.7	33.61	13.70
-194	152.5	38.61	15.74
-240	179.6	45.47	18.54
-271	213.9	54.16	22.08

TECHNICKÝ A ZKUŠEBNÍ ÚSTAV STAVEBNÍ PRAHA, s.p. Technical and Testing Institute for Construction Prague

Akreditovaná zkušební laboratoř, Autorizovaná osoba, Notifikovaná osoba, Oznámený subjekt, Subjekt pro technické posuzování Certifikační orgán, Inspekční orgán / Accredited Testing Laboratory, Authorised Body, Notified Body, Technical Assessment Body Certification Body, Inspection Body, Prosecké 81/1768, 190 00 Praha 9

Central laboratory

Testing department Praha, Prosecká 811/76a, 190 00 Praha 9

tel.: +420 286 019 435, e-mail: praha@tzus.cz, www.tzus.eu

TEST REPORT

issued by Testing Laboratory No. 1018.3 accredited pursuant to ČSN EN ISO/IEC 17025:2018 by Czech Accreditation Institute

No. 010-043117

on thermal transmittance calculation according to ČSN EN ISO 10077-1,2

Manufacturer:

Rene Ossenblok International

Address:

Nowe Żabno 18a, 67-100 Nowa Sól, Poland

Company ID:

925 208 45 21

Test sample:

External aluminium door

Order No.:

Z010190257

Number of pages of the Test Report incl. title page: 6

Number of Annexes: 1

Prepared by:

Ing. Radka Sedmidubská

specialist

Approved by:

ng. Iveta Jiroutová Deputy head of the testing department

Print No. 7

Number of prints: 4

Praha, on 05.08, 2020

Stamp of testing department No. 1018.3

Declaration: 1) The test results in this Report relate only to the tested article and they do not substitute any other documents 2) The Test Report must be copied as a whole only otherwise a written consent of the testing laboratory is needed.

Technical and Test Institute for Construction Prague, Central laboratory

Nemanická 441, 370 00 České Budějovice, Czech Republic

Bank: Komerční banka, Praha 1

Phone.: +420 387 023 211

Account No.: 1501-931/0100

www.tzus.eu

Entered in the Commercial Register maintained by Municipal Court in Preque, Section ALX, Insert 711, Comp. ID: 00015679, VAT: CZ00015679 e-mail: pilarova@tzus.cz

1. Details of the test object

Test object:

External alumium single leaf door from panels, size 1,23 x 2,18 m

Section profile schema see Annex 1.

Manufacturer:

Rene Ossenblok International

Order:

Z010200030

Place of production:

Nowe Żabno 18a, 67-100 Nowa Sól, Poland

2. Specification of the calculated subject

<u>Door frame:</u> aluminium extruded "L" profile (one chamber) – construction depth 60 mm, wall thickness – min. 2,0 mm

Manufacturer: EMAX (Netherlands)

<u>Door leaf:</u> aluminium bolted solid panels with stiffening ribs – total thickness 30 mm (one chamber), wall thickness min. 2,0 mm; "U" profile (depth 40 mm, width 30 mm) - top and bottom from internal side (width of the leaf) fastens the whole construction

Manufacturer: EMAX (Netherlands)

<u>Gasket</u>: profiled seal (around the perimeter) – in the groove of the door frame (from the exterior side) Manufacturer: EMKA (Netherlands)

Hardware:

• two door hinges / leaf

Manufacturer: Rene Ossenblok International (Poland)

lock (Nemef) with key

Manufacturer: Assa Abloy (Netherlands)

• panic exit device (from interior) - push bar

Manufacturer: Moergestel BV Tilburg (Netherlands)

bolt head, dead bolt, vertical rod (stainless steel), round handle (from exterior)

Manufacturer: Rene Ossenblok International (Poland)

Accessories: storm chain, screws M8 x 30 (stainless steel)

Note: The hardware was not considered in the calculation (with regard to quantity and type of product – without thermal insulation)

3. Mode of calculation

3.1. For the calculation were used these standards:

ČSN EN ISO 10077-1:2019......Thermal performance of windows, doors and shutters

- Calculation of thermal transmittance - Part 1: General

ČSN EN ISO 10077-2:2019......Thermal performance of windows, doors and shutters

- Calculation of thermal transmittance - Part 2: Numerical

method for frames

3.2. Details of deviations from the calculating procedure:

no deviations

4. Computer program, licence contract

Calculation was done by AREA 2017 and MESHGEN 2018 (Svoboda software) under a licence contract between the user TZÚS Praha, s.p., branch 0100 – Praha, Prosecká 76a, Praha 9 and Dr. Ing. Zbyněk Svoboda, Kladno, dated 5.1. 2006.

5. List of submitted documents

- Technical product description
- Sections of the door in "dxf" format (vertical, horizontal)

6. Thermal transmittance of the frame and door infill

6.1. Generally

Calculation was done by AREA 2017 and MESHGEN 2018 (Svoboda software) according to ČSN EN ISO 10077-1 and ČSN EN ISO 10077-2. Thermal conductance of frame $L_{\rm f}$ was determined. For calculation the middle part of the door leaf was substituted by insulating panel with the known properties. After that thermal transmittance of frame $U_{\rm f}$ was calculated according ČSN EN ISO 10077-2.

Characteristics of interior air:

- design internal temperature 20°C
- design relative internal air humidity 50%
- internal resistance of heat transfer was entered value 0,13 m².K/W (common locations) and 0,2 m².K/W (in corners in places with reduced airflow)

Characteristics of exterior air:

- design external temperature in winter season was calculated 0°C
- design relative external humidity 84%
- and external resistance of heat transfer 0,04 m² K/W

Notes:

- 1) Frame......door frame + part of the door leaf....width 0,05 m (side and top portion)
- 2) Door infill......door leaf without edge parts

Characteristics of used materials:

No.	Signification	Material	Unit	Value
1	λ	Aluminium	W/(m.K)	160
2	λ	Gasket (EPDM)	W/(m.K)	0,25
3	λ	Insulating panel (board replacing infill)	W/(m.K)	0,035
4	λ	Air cavity - unventilated	W/(m.K)	0,026 - 0,198
5	λ	Air cavity - moderately ventilated	W/(m.K)	0,065 - 0,067

6.2. Frame

Computational model from software:

Results:

Thermal coupling coefficient L _f ^{2D}	0,712 W/(m.K)
Width of the frame b _f	0,05 m
Thermal transmittance of the board replacing infill Up	0,97 W/(m ² .K)
Width of the board replacing infill b _p	0,376 m

 $U_f = (L_f^{2D} - U_p.b_p)/b_f$

Thermal transmittance of the frame Uf

6,918 ÷ 6,9 W/(m².K)

Note: According to ČSN EN ISO 10077-2, art. 7.4 the thermal transmittance of the frame shall be given to two significant figures

6.3. Door infill

Computational model from software:

Results:

Thermal coupling coefficient L_p^{2D} Width of the characteristic section b_p

2,071 W/(m.K) 0,376 m

 $U_p = L_p^{2D}/b_p$

Thermal transmittance of the door infill \mathbf{U}_{p}

5,508 ÷ **5,5 W/(m².K)**

7. Thermal transmittance of the door

7.1. Generally

Calculation of total thermal transmittance U_D carried out according ČSN EN ISO 10077-1.

Following information about the door was taken into account:

- a) $\underline{\text{geometric data}}$ area of frame (A_f), door infill (A_p), infill perimeter (I_p)
- b) data established by this report thermal transmittance of frame (U_f) and door infill (U_p)

Note: linear thermal transmittance in imposition of infill (ψ_p)not calculated separately; this influence was considered in the calculation of the U_f

On the basis of these values the total thermal transmittance of the door UD was calculated:

$$A_f = 0.33 \text{ m}^2$$

 $U_f = 6.9 \text{ W/m}^2.\text{K}$
 $A_p = 2.35 \text{ m}^2$
 $U_p = 5.5 \text{ W/m}^2.\text{K}$
 $\psi_p \dots 0 \text{ W/m.K}$

$$U_D = \frac{A_p \cdot U_p + A_{f.} U_f + I_{p.} \Psi_p}{A_p + A_f} = 5,67 \div 5,7 \text{ W/(m}^2.\text{K)}$$

7.2. Result summary

Thermal transmittance of the door:

Single leaf door	Test method	Determined value
size 1,23 x 2,18 m	ČSN EN ISO 10077-1	U _D = 5,7 W/m ² .K

Note: The thermal transmittance of the calculated according to ČSN EN ISO 10077-2, art. 7.2.3 shall be given to two significant figures.

8. List of Annexes

Annex 1......door scheme + section profile scheme

END OF THE TEST REPORT

External aluminium door

Vertical section A-A – top

Vertical section A-A – bottom

Horizontal section B-B

